Sexta-feira, 23 de Outubro de 2009

Grandes Matemáticos - Pitágoras

Pitágoras é especialmente conhecido pelo teorema que leva o seu nome e que quase todos os estudantes que completam o ensino básico conhecem.
Nasceu, segundo alguns, na ilha grega de Samos, no mar Egeu, no ano 580 a.C.
Segundo dizem também, embora se saiba pouco da sua juventude, ganhou prémios nos Jogos Olímpicos. Na idade adulta a sua sede conhecimento levou-o a percorrer o médio oriente e viajou pelo Egipto, Indostão, Pérsia, Creta, Palestina.
Acabou por se fixar em Crotona no sul de Itália, onde fundou uma escola (Escola Pitagórica), cuja filosofia tinha um carácter hermético e o conhecimento era transmitido oralmente, não havendo escritos. Durante cerca de 40 anos ensinou aos seus discípulos que “o número era tudo”.
“Os pitagóricos acreditavam firmemente que a essência de tudo, quer na geometria, quer nas questões práticas e teóricas da vida do homem, podia ser explicada através das propriedades dos números inteiros e/ou das suas razões”.
(in http://www.educ.fc.ul.pt/icm/icm99/icm17/pitagoras.htm
)


Pitágoras estudou e construiu os poliedros regulares que ficaram conhecidos como sólidos platónicos, tendo sido Platão o seu divulgador. São cinco e aparecem associados ao universo e aos seus elementos, tendo em atenção a forma das suas faces. O dodecaedro simbolizava o próprio universo pela sua harmonia.

 


          (In http://mat.absolutamente.net/recursos/fichas/10geo/platon.pdf)


Pitágoras, no entanto, como já dissemos, é especialmente conhecido pelo seu teorema, que afirma que o quadrado da hipotenusa num triângulo rectângulo é igual à soma dos quadrados dos catetos.


São conhecidas algumas dezenas ou mesmo centenas de demonstrações do teorema. Vamos apresentar duas:


- Uma delas utiliza algumas peças do tangran para fazer a demonstração.
Num dos catetos do triângulo rectângulo pequeno cabe a peça quadrada do tangran; no outro cateto cabe um quadrado feito com os dois triângulos pequenos e na hipotenusa cabe um quadrado formado pelo triângulo médio e os dois triângulos pequenos. Verifica-se, assim, que o teorema fica demonstrado já que o triângulo médio é equivalente ao quadrado. Uma figura ilustra bem a situação:



Como é fácil de verificar a área do quadrado maior é igual à soma das áreas dos outros dois. Está assim demonstrado teorema de Pitágoras.


- A outra demonstração é igualmente bastante elegante e tem a característica de ter sido publicada em 1876 por um dos presidentes americanos do século XIX, James Abraham Garfield (1831-1881):


Garfield começou por construir um trapézio e no seu interior três triângulos rectângulos. A figura apresentava-se deste modo:

   


Calculando a área do trapézio rectângulo cujas bases são a e b vem:


At = (a + b)/2 x h, sendo que h = a + b
At = (a + b)/2 x (a + b)
At = (a2+ b2+ 2ab)/2


Por outro lado a área do trapézio é igual à soma das áreas dos três triângulos rectângulos que o constituem:


At = (a x b)/2 + (a x b)/2 + (c x c)/2
At = 2ab/2 + c2/2
At = (2ab + c2)/2


Daqui resulta que podemos igualar as duas expressões que representam a área do trapézio:


a2 + b2 + 2ab = 2ab + c2 retirando o denominador 2 nas duas expressões.


Simplificando, vem:


a2 + b2 = c2 , como queríamos demonstrar, já que:


c – hipotenusa
a e b - catetos


Este nosso artigo não podia acabar sem um desafio para os leitores, que tem de ter a aplicação do teorema de Pitágoras e que fomos buscar adaptando-o a um livro de Brian Bolt – “Mais Actividades Matemáticas”:


O Pátio Medieval


Durante a época medieval, como todos sabem, a água consumida era retirada dos poços. Num mosteiro que existia perto de Viseu, construído em volta de um pátio de forma quadrada, foi aberto um poço cuja localização está de acordo com o desenho que se segue:

O desafio que vos propomos é, utilizando o teorema de Pitágoras, calcular quanto media cada lado do pátio do mosteiro.


Ficamos à espera das vossas soluções, comentários e sugestões.
 

publicado por Frantuco às 17:58
link do post | comentar | favorito
|

.mais sobre mim

.pesquisar

 

.Janeiro 2010

Dom
Seg
Ter
Qua
Qui
Sex
Sab
1
2
3
4
5
6
7
8
9
10
12
13
14
15
17
18
19
20
21
22
23
25
26
27
28
29
30
31

.posts recentes

. O Ano 2010 e as potências...

. O Ano de 2010 e as potênc...

. O Ano de 2010 e as potênc...

. As cidades, as vilas, as ...

. O caderno de exercícios "...

. Os contos das noites de i...

. Mais uma vez o regresso à...

. Grandes Matemáticos - Pit...

. Cereais, legumes, medidas...

. Memórias I

. O Labirinto

. Sapos e rãs ou ovelhas e ...

. Rãs e Sapos ou Ovelhas e ...

. HIPÁTIA DE ALEXANDRIA

. A decomposição de números...

. Grandes Matemáticos - Leo...

. Os algoritmos - o número ...

. Os algoritmos - o código ...

. Os caminhos do João

. As probabilidades no dia ...

. As probabilidades no dia ...

. O tempo, os relógios e as...

. As probabilidades e os an...

. Vamos aos gambuzinos

. O jardim de pedra

. De novo as eleições - as ...

. Os frutos secos do Natal

. As caminhadas, as pesagen...

. O Método de Hondt

. O jogo do NIM - segunda v...

. O jogo do NIM - primeira ...

. A travessia da ponte - no...

. Algoritmos - A fórmula de...

. Algoritmos - O teorema de...

. Um problema de idades

. INVERSÕES

. A travessia da ponte

. O carteiro, as idades e o...

. A herança do lavrador

. O relógio, as horas e os ...

. A decomposição de números...

. O problema das idades

. CAPICUAS

. DINHEIRO FALSO

. O Pombal das cem pombas

. Números e cálculo mental

. Poesia Matemática

. Os algoritmos - raiz quad...

. Os algoritmos - raíz quad...

. Os algoritmos - algoritmo...

.arquivos

. Janeiro 2010

. Dezembro 2009

. Novembro 2009

. Outubro 2009

. Agosto 2009

. Julho 2009

. Junho 2009

. Maio 2009

. Abril 2009

. Março 2009

. Fevereiro 2009

. Janeiro 2009

. Dezembro 2008

. Novembro 2008

. Outubro 2008

. Setembro 2008

. Agosto 2008

. Julho 2008

.palavras-chave

. todas as tags

.links

.visitas

track web site traffic
Netflix Rental
blogs SAPO

.visitantes